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The Power of Slightly More than One Sample in
Randomized Load Balancing

Lei Ying, R. Srikant and Xiaohan Kang

Abstract—In many computing and networking applications,
arriving tasks have to be routed to one of many servers, with
the goal of minimizing queueing delays. When the number of
processors is very large, a popular routing algorithm works as
follows: select two servers at random and route an arriving task
to the least loaded of the two. It is well-known that this algorithm
dramatically reduces queueing delays compared to an algorithm
which routes to a single randomly selected server. In recent cloud
computing applications, it has been observed that even sampling
two queues per arriving task can be expensive and can even
increase delays due to messaging overhead. So there is an interest
in reducing the number of sampled queues per arriving task. In
this paper, we show that the number of sampled queues can be
dramatically reduced by using the fact that tasks arrive in batches
(called jobs). In particular, we sample a subset of the queues
such that the size of the subset is slightly larger than the batch
size (thus, on average, we only sample slightly more than one
queue per task). Once a random subset of the queues is sampled,
we propose a new load balancing method called batch-filling to
attempt to equalize the load among the sampled servers. We show
that our algorithm maintains the same asymptotic performance
as the so-called power-of-two-choices algorithm while using only
half the number of samples.

I. INTRODUCTION

In many computing and networking applications, including
routing, hashing, and load balancing (see [14]), a router (also
called scheduler) has to route arriving tasks to one of many
servers with the goal of minimizing queueing delays. Such
applications have been increasingly relevant recently, due to
the explosive growth of cloud computing where a large number
of servers in a data center are used to process a large volume of
tasks. Ideally, one would like the router to consider the queue
lengths at all the servers and select the shortest of the queues
since this is delay optimal, at least in certain traffic regimes
(see [6] and references cited within). However, sampling all the
queues can be expensive when the number of servers is very
large. Motivated by such considerations, load balancing in the
large-server limit was studied in [9], [11], [19]. The key result
in those papers is that queueing delays can be dramatically
reduced by sampling two servers for each task, instead of just
one, and routing the task to the shorter of the two queues.
We will call this basic algorithm the power-of-two-choices
algorithm as in prior work. These results have been extended
in various directions. In [3], [4], the results have been extended
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to the case of heavy-tailed distributions, in [17], [18], the
effect of resource pooling has been considered, and the case
of heterogeneous servers operating under the processor-sharing
discipline has been treated in [12].

In this paper, we are motivated by cloud computing ap-
plications in which each arrival is a job consisting of many
tasks, each of which can be executed in parallel in possibly
different servers. In queueing theory parlance, this model
differs from the models mentioned earlier due to the fact that
task arrivals occur in batches, i.e., each job corresponding to
a batch arrival of tasks. We note the terminology we use
here: a job is a collection of tasks, and each task can be
routed independently of each other. Such a model arises in
the well-known Map/Reduce framework, for example, where
each Map job consists of many Map tasks (here, we do not
consider the Reduce phase of the job). More generally, any
parallel processing computer system will have job arrivals
which consist of many tasks which can be executed in parallel.
The question of interest is whether the fact that there are batch
arrivals can be exploited to significantly reduce the sample
complexity. Here, by sample complexity, we mean the number
of queues sampled per arriving task to make routing decision.
Our motivation for this problem arises from a study of batch
arrivals to computing clusters presented in [13], where the
authors observe a phenomenon called messaging overhead,
i.e., the overhead of providing task backlog feedback can
slow down servers and increase the delays experienced by
tasks/jobs. Further, [13] proposes an algorithm which achieves
better performance than the power-of-two-choices algorithm
when both of them use the same number of samples per
arriving task. In this paper, we observe that this basic algorithm
for batch arrivals suggested in [13] does not work well in
all traffic conditions. Moreover, we present a new algorithm
which exploits batch arrivals in a manner in which it provides
much better sample complexity than the power-of-two-choices
algorithm for the same delay performance. Further, when
both algorithms are allowed the same sample complexity, our
algorithm achieves better delay performance.

Our main contributions are as follows:
1) We present an algorithm which samples md queues where

m is the batch size (i.e., number of tasks) of a job. Thus,
d is the number of sampled queues per task. The tasks are
routed to the queues using a novel algorithm called water
filling.

2) We first study our algorithm and other previously proposed
algorithms using a mean-field analysis. We show that,
for any d > 1, we achieve better performance than the
traditional power-of-two-choices algorithm in the large-
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systems regime. Thus, the mean-field analysis shows that,
in the large-systems regime, we can reduce the number of
samples per arriving task dramatically: from d = 2 to any
d > 1.

3) We then justify the mean-field analysis. In particular, we
first show that the stochastic system dynamics converge
to deterministic differential equations in the large-systems
limit for any finite t. Our proof here is motivated by the
proof of a celebrated result on density-dependent Markov
processes called Kurtz’s theorem [7], but our model is
somewhat nonstandard and requires additional steps which
are not needed in the original Kurtz’s theorem. Further,
using a novel Lyapunov function, we show that the sys-
tem of differential equations converges to an equilibrium
described by the mean-field analysis. Then by showing
the interchange of the limits, we prove the stationary
distribution of the queue size distribution converges to the
solution of the differential equations.

4) Finally, we perform extensive simulations to justify that our
analytical conclusions are indeed valid in large, but finite,
systems. In particular, simulations show that our algorithm
with just one sample per task on average, achieves the
same job delay performance as the power-of-two-choices
algorithm and dramatically reduces the delay compared to
the algorithm proposed in [13].

II. PROBLEM STATEMENT AND MAIN RESULTS

We consider a computing cluster with n identical servers
and a central scheduler as shown in Figure 1. Each server can
process one task at a time. Tasks arrive at the scheduler in
batches (also called jobs). Each batch consists of m tasks and
the job arrival process is a Poisson process with rate n

mλ. We
want the batch size to be not too small, so we assume that m =
Θ(log n) and m is increasing function of n. For simplicity, we
consider a deterministic batch size here, but the results in the
paper can be extended to random batch sizes as well in a
straightforward manner, as will be discussed in the extended
version of the paper. Furthermore, the results of this paper
hold when the system has multiple distributed schedulers and
the job arrivals on these schedulers are independent Poisson
processes with aggregated rate n

mλ. This is because the sum
of independent Poisson processes is Poisson. The scheduler
dispatches the tasks to the servers when a job arrives. The
service times of the tasks are exponentially distributed with
mean 1, and are independent across tasks. When a task arrives
at a server, it is processed immediately if the server is idle or
waits in a FIFO (first-in, first-out) queue if the server is busy.

We first describe the traditional power-of-d-choices algo-
rithm (which is a simple generalization of the power-of-
two-choices mentioned in the previous section) and another
previously-proposed idea called the batch sampling algorithm.
Then, we present our idea which we call batch-filling, which
combines batch sampling with our new load balancing tech-
nique called water-filling.
The-Power-of-d-Choices [10], [19]: When a batch of m tasks
arrive, the scheduler probes d servers uniformly at random for
each task. The task is routed to the least loaded server. �

server 1 server 2 server n

scheduler

m tasks in each job 

Fig. 1: A computing cluster with n servers and a central
scheduler

Batch-Sampling [13]: When a batch of m tasks arrive, the
scheduler probes dm servers uniformly at random to acquire
their queue lengths. The m tasks are added to the the least
loaded m servers, one for each server. �

In this paper, we propose a new load-balancing algorithm,
named batch-filling: we sample queues as in the batch sam-
pling algorithm but the way that tasks are routed to servers
uses a different procedure which we call water-filling.
Batch-Filling: When a batch of m tasks arrive, the scheduler
probes dm servers uniformly at random to acquire their queue
lengths. The m tasks are added to the dm servers using water
filling, specifically, the tasks are dispatched one by one to
the least loaded server, where the queue length of a server is
updated after it receives a task. �

Remark: In batch-filling, the first task in a batch is routed
to the least loaded server among the sampled servers, i.e.,
the one with the smallest number of tasks in its queue. The
key difference compared to batch-sampling is that the server’s
queue size is updated after this (which means that this server
may no longer be the least-loaded in the sampled servers),
and then the next task in the batch is again routed to the
least loaded server, and so on. As we will see later, this small
change to the routing algorithm has dramatic consequences
to the sample complexity of the algorithm. In all algorithms,
at each step, ties are broken at random if there is more than
one least-loaded server.

In this paper, d is called probe ratio, which is assumed
to be a constant independent of n. As in [10], [19], we will
study the different algorithms in the large-systems limit, i.e.,
as n → ∞, since a data center today may consist of tens of
thousands of servers. The main theoretical results which will
be established in the paper are summarized in Table I, and we
discuss them below.

• The expected per-task delay of batch-filling with any d > 1
is smaller than both batch-sampling with d = 2 and the-
power-of-two-choices when λ→ 1−. In other words, batch-
filling outperforms the other two algorithms by sampling
slightly more than one server per task, hence the title of the
paper.

• The size of the longest-queue in the system under the-
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Batch-Filling Batch-Sampling Pod
Expected per-task delay − 1

λ
log(1−λ)
log(1+λd) +Oλ(1) − 1

λ
log(1−λ)
log(λd) +Oλ(1) − 1

λ
log(1−λ)
log(λd) +Oλ(1)

Maximum queue size in the system
⌈
− log(1−λ)

log(1+λd)

⌉ ⌈
log d−1

d(1−λ)
log(λd)

⌉
if λd 6= 1 ∞⌈

1
1−λ

⌉
if λd = 1

TABLE I: This table summarizes the expected per-task delays and the maximum queue sizes of the three scheduling algorithms.
The order notation Oλ(·) is defined when 1/(1−λ)→∞, i.e., λ→ 1−. Pod stands for the-power-of-d-choices. In batch-filling
and batch-sampling, d > 1; and in the-power-of-d-choices, d is an integer and d ≥ 2.

power-of-d-choices is unbounded for any d ≥ 2 because the
stationary queue length distribution has unbounded support.
The sizes of the longest-queue under both batch-filling and
batch-sampling are finite because the stationary distributions
have bounded support. The longest queue under batch-filling
with d > 1 is smaller than that of batch-sampling with d = 2
when λ → 1−. When d is close to 1, the size of longest
queue under batch-filling is much smaller than that under
batch-sampling (7 versus 26 when d = 1.1 and λ = 0.99).

• The small and bounded size of the queues under batch filling
has important consequences. A job is said to be completed
when all the tasks in the job are completed. Since the tail of
the queue size is cut off, this has the effect of significantly
reducing job completion delays, as we will see later in the
simulations section.

• The above theoretical results suggest that the sample com-
plexity (i.e., the number of samples per arriving task) can be
significantly reduced under batch-filling. On the other hand,
the computational complexity is slightly increased compared
to batch-sampling since we require to have to compare the
sizes of the smallest queues and the next smallest queues
each time a task is routed. However, this increase in compu-
tational complexity is a cost to be paid at the router whereas
increased sample complexity slows down the servers since
they have to send queue length feedback which takes time
away from their primary role of processing tasks. This is
the reason why sample complexity is a more significant
issue than the computational complexity in data centers
(although we do not want the computational complexity to
be very high either). The batch-sampling algorithm performs
O(dm logm) computations per batch which corresponding
to a sorting operation, while batch-filling algorithm performs
an additional 2m operations since it has to keep track of the
queue lengths of the smallest queues and the next smallest
queue.

III. MEAN-FIELD ANALYSIS

In this section, we will use mean-field analysis to study the
stationary distributions of the queue lengths under batch-filling
and batch-sampling. The results will be further validated using
a proof inspired by the proof of Kurtz’s theorem in Section IV.
Let Q(n)

k (t) denote the queue length of the kth server at time t
in a system with n queues. It can be easily verified that Q(n)(t)
is an irreducible and nonexplosive Markov chain, and using
the standard Foster-Lyapunov theorem (see, for example, [15])
it can be verified that the Markov chain is positive recurrent
and hence, has a unique stationary distribution.

Theorem 1. The Markov chain Q(n)(t) is positive recurrent
under batch-filling. Furthermore, there exists a constant c > 0,
independent of n, such that

E

[
1

n

n∑
k=1

Q̂
(n)
k

]
< c

for any n, where Q̂(n)
k denotes the queue length of server k

in the steady state. �

The proof of this theorem is presented in the appendix. Let
π

(n)
i denote the stationary distribution of queue k, i.e., the

probability that the queue size is i at server k. Here, the
index k is ignored because the stationary distributions are
identically across servers. According to the theorem above,
we have

∑
i iπ

(n)
i < c, which further implies that π(n)

i → 0

as i → ∞ and
∑∞
j=i π

(n)
j → 0 as i → ∞. We remark that

one challenge in proving that the stochastic system dynamics
converge to deterministic differential equations lies in that
the system is an infinite-dimensional system. We will utilize
the facts mentioned above to overcome this challenge in the
proofs.

The mean-field analysis proceeds as follows. Assume the n
queues are in the steady state, and further assume that the
queue lengths are identically and independently distributed
(i.i.d.) with distribution π. This i.i.d. assumption in the mean-
field analysis will be validated later in Section IV in the large-
systems limit. Now consider the queue evolution of one server
in the system. Each queue forms an independent Markov chain
as shown in Figure 2, denoted by Q(n)(t), and the transition
rates will be determined by the particular strategy used to
route tasks to servers. We will derive the transition rates for
each of the strategies described earlier, namely batch filling,
batch sampling, and the power-of-d-choices, in the rest of this
section.

1 1 1
0 i i+1 i+2 K

q(n)i,i+K

q(n)i,i+2
q(n)i,i+1

Fig. 2: The Markov chain representing the nth system in the
mean field analysis
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A. The stationary distribution under batch-filling

We first consider the batch-filling algorithm. The down-
crossing transition rate from state i to i− 1 is 1 for all i ≥ 1,
i.e.,

q
(n)
i,i−1 = 1 ∀ i,

because the processing time of a task is exponentially dis-
tributed with mean 1. The up-crossing transition rate from
state i to state j for j > i is

q
(n)
i,j =

n

m
λ× dm

n
×
∑
φ

P(φ)× P(j|φ, i)

= dλ
∑
φ

P(φ)P(j|φ, i). (1)

In the expression above,

• n
mλ is the batch arrival rate;

• dm/n is the probability a server is probed when dm servers
are sampled;

• φ is a (dm − 1)-vector that denotes the queue lengths of
the other dm− 1 sampled servers, so

P(φ) =

dm−1∏
k=1

πφk ;

and
• P(j|φ, i) is the probability that a server’s queue length

becomes j when the server is sampled and is in state i,
and the the states of the other dm− 1 sampled servers are
φ.

Without loss of generality, assume φk ≤ φl if k ≤ l, i.e.,
φ is ordered. Recall that batch-filling dispatches tasks using
water filling among the sampled dm queues. Therefore, given
i and φ, either j = i if no task is assigned to the server,
or j takes two possible values. Consider a simple example in
Figure 3 where three tasks will be dispatched to four servers
with queue lengths 1, 1, 4, and 4. Then the servers whose
queue size is 4 will not receive any task, and the servers whose
queue size is 1 will receive one or two tasks.

Fig. 3: An example of water filling

Assume ties are broken uniformly at random. The values of
P(j|φ, i) are summarized below.

• If
dm−1∑
k=1

(i− φk)Iφk≤i−1 ≥ m, (2)

which means that the tasks will be assigned to servers whose
original queue sizes are smaller than i, then

P(j|φ, i) =

{
1 if j = i,

0 if j 6= i.

• If condition (2) does not hold, then the server with queue
size i will receive some tasks, and

P(j|φ, i) =

{
1− αφ,i if j = Q̄φ,i − 1,

αφ,i if j = Q̄φ,i,

where

Q̄φ,i = min

{
j : (j − i) +

dm−1∑
k=1

(j − φk)Iφk≤j−1 ≥ m

}
,

which is the maximum size a queue can be filled up to
during the water filling, and αφ,i is given by

m− (Q̄φ,i − 1− i)−
∑dm−1
k=1 (Q̄φ,i − 1− φk)Iφk≤Q̄φ,i−1

1 +
∑dm−1
k=1 Iφk≤Q̄φ,i−1

,

which is the probability that a server receives one more task
after its queue size becomes Q̄φ,i − 1 during water-filling.

While the transition rate q(n)
i,j in (1) is a complex expression

for finite n, the following lemma shows that q(n)
i,j converges

to some simple qi,j as n → ∞. The proof of this lemma is
presented in the appendix.

Lemma 2. Under batch-filling, the transition rates given dis-
tribution π, denoted by q(n)

i,j (π), converges; and specifically,

lim
n→∞

q
(n)
i,j (π) = qi,j(π),

where for j 6= i,

qi,j(π) =


1 if j = i− 1,

λd(1− απ) if j = Q̄π − 1 > i,

λdαπ if j = Q̄π > i,

0 otherwise,

Q̄π = min

{
j :

j−1∑
l=0

(j − l)πl ≥
1

d

}
(3)

and

απ =
1
d −

∑Q̄π−2
j=0 (Q̄π − 1− j)πj∑Q̄π−1

j=0 πj
∈ (0, 1].

�

According to the lemma above, the queue length dynamics
of a single server, in the limit as the number of servers
becomes infinity, can be represented by the Markov chain in
Figure 4, where the up-crossing transitions are into only two
states Q̄π − 1 and Q̄π due to water filling. Based on Lemma
2, we can calculate the stationary distribution of the queue
length of a single server in the large-system limit by finding
π̂ that satisfies the global balance equation [15].
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1
1

0 i
1 1

Fig. 4: The queue-length Markov chain of a single-server, in
the large-system limit, under batch-filing

Theorem 3. The stationary distribution of the queue length
of a single server in the large-system limit under batch-filling
is

π̂i =


1− λ i = 0,

(1− λ)λd(1 + λd)i−1 1 ≤ i ≤ Q̄BF − 1,

1− (1− λ)(1 + λd)Q̄BF−1 i = Q̄BF ,

0 otherwise.

(4)

where Q̄BF =
⌈
− log(1−λ)

log(1+λd)

⌉
. The expected queue length is

− log(1− λ)

log(1 + λd)
+Oλ(1).

Proof. We first show Q̄BF = Q̄π̂, where Q̄π is defined in (3).
Note that Q̄BF ≥ 1. If λ and d are such that Q̄BF = 1, then
equivalently

− log(1− λ)

log(1 + λd)
≤ 1,

which implies that 1
1−λ ≤ 1 + λd, or 1

d ≤ 1 − λ. Then π̂ =
(1− λ, λ, 0, . . . ) and

Q̄π̂ = 1 = Q̄BF .

If λ and d are such that Q̄BF > 1, according to (3), to show
Q̄π̂ = Q̄BF we only need to show

Q̄BF−2∑
l=0

(Q̄BF − 1− l)π̂l <
1

d
≤
Q̄BF−1∑
l=0

(Q̄BF − l)π̂l. (5)

Let LHS and RHS denote the left-hand-side and the right-
hand-side of (5). Then

LHS =

Q̄BF−2∑
i=0

i∑
j=0

π̂j = (1− λ)
(1 + λd)Q̄BF−1 − 1

λd
,

and

RHS =

Q̄BF−1∑
i=0

i∑
j=0

π̂j = (1− λ)
(1 + λd)Q̄BF − 1

λd
.

Then (5) is equivalent to

Q̄BF − 1 < − log(1− λ)

log(1 + λd)
≤ Q̄BF ,

which holds according to the definition of Q̄BF .

We next check the global balance equations. For i = 0,

π̂0(q0,Q̄BF + q0,Q̄BF−1)− π̂1q1,0

=(1− λ)λd− (1− λ)λd

=0.

For 1 ≤ i ≤ Q̄BF − 2,

π̂i(qi,i−1 + qi,Q̄BF + qi,Q̄BF−1)− π̂i+1qi+1,i

= (1− λ)λd(1 + λd)i−1(1 + λd)− (1− λ)λd(1 + λd)i

= 0.

For i = Q̄BF − 1,

π̂Q̄BF−1(qQ̄BF−1,Q̄BF−2 + qQ̄BF−1,Q̄BF )

−
Q̄BF−2∑
i=0

π̂iqi,Q̄BF−1

− π̂Q̄BF qQ̄BF ,Q̄BF−1

=(1− λ)λd(1 + λd)Q̄BF−2(1 + λdαπ̂)

− (1− λ)(1 + λd)Q̄BF−2λd(1− απ̂)

− (1− (1− λ)(1 + λd)Q̄BF−1)

=(1− λ)(1 + λd)Q̄BF−1(λdαπ̂ + 1)− 1.

From the definition of απ̂ we can verify that

απ̂ =
1

λd(1− λ)(1 + λd)Q̄BF−1
− 1

λd
.

So we have

π̂Q̄BF−1(qQ̄BF−1,Q̄BF−2 + qQ̄BF−1,Q̄BF )

−
Q̄BF−2∑
i=0

π̂iqi,Q̄BF−1

− π̂Q̄BF qQ̄BF ,Q̄BF−1

=0.

For i = Q̄BF ,

π̂Q̄BF qQ̄BF ,Q̄BF−1 −
Q̄BF−1∑
i=0

π̂iqi,Q̄BF

=(1− (1− λ)(1 + λd)Q̄BF−1)− (1− λ)(1 + λd)Q̄BF−1λdαπ̂

=1− (1− λ)(1 + λd)Q̄BF−1(1 + λdαπ̂)

=0.

So the global balance equations holds.
Finally the expected queue length in stationary distribution
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is

π̂1 + 2π̂2 + · · ·+ Q̄BF π̂Q̄BF

=

Q̄BF−1∑
i=0

1−
i∑

j=0

π̂j


=

Q̄BF−1∑
i=0

(
1− (1− λ)(1 + λd)i

)
=Q̄BF − (1− λ)

(1 + λd)Q̄BF − 1

λd

=− log(1− λ)

log(1 + d)
+Oλ(1).

B. The stationary distribution under batch-sampling

Recall in batch-sampling, the m tasks are routed to the least-
loaded m queues among the sampled dm queues. Consider a
server with queue size i and assume it is probed. Then the
server will receive a task with probability

E

min

1,

(
m−

∑i−1
j=0

∑dm−1
k=1 Iφk=j

1 +
∑dm−1
k=1 Iφk=i

)+



=E

min

1,

 m
dm−1 −

∑i−1
j=0

∑dm−1
k=1 Iφk=j

dm−1

1
dm−1 +

∑dm−1
k=1 Iφk=i

dm−1

+



→E

min

1,

(
1
d −

∑i−1
j=0 πj

πi

)+

 .

Following a similar analysis as batch-filling, we can establish
the following lemma. The details are omitted.

Lemma 4. Under batch-sampling, the transition rates given
distribution π, denoted by q(n)

i,j (π) converges; and specifically,

lim
n→∞

q
(n)
i,j (π) = qi,j(π) =


1 if j = i− 1,

λd if i+ 1 = j ≤ Q̄π − 1,

λαπ if i+ 1 = j = Q̄π,

0 otherwise,

where

Q̄π = min

{
i :

i−1∑
l=0

πj ≥
1

d

}
and

απ =
1
d −

∑Q̄π−2
j=0 πj

πQ̄π−1

∈ (0, 1].

�

The Markov chain in the large-system limit is shown in
Figure 5. Given π, the Markov chain is a birth-death process
up to state Q̄π. The stationary distribution can again be
calculated using the global balance equations. The results are
presented in Theorem 5, and the details are omitted.

1 1

0

1 1

1

1

Fig. 5: The Markov chain in the large-system limit under
batch-sampling

Theorem 5. The stationary distribution of the queue length of
a single server in the large-system limit under batch-sampling
is

π̂i =


1− λ i = 0,

(1− λ)λidi 1 ≤ i ≤ Q̄BS − 1,

1− (1− λ)λ
idi−1
λd−1 i = Q̄BS ,

0 otherwise.

where

Q̄BS =

⌈
log d−1

d(1−λ)

log(λd)

⌉
.

The expected queue length is

− log(1− λ)

log(λd)
+Oλ(1). �

C. The stationary distribution under the-power-of-d-choices

For a system with non-batch (single) arrivals, the stationary
queue-length distribution of a single server in the large-system
limit under the-power-of-d-choices has been established in
[10], [19]. The power-of-d choices routing under our batch-
arrival model also satisfies the same limiting queue-length
distribution, which we provide below for comparison purposes.

Theorem 6. The stationary distribution of the queue length
of a server in the infinite system under the-power-of-d-choices
is

π̂i = λ
di−1
d−1 − λ

di+1−1
d−1 .

The expected queue length is

− log(1− λ)

log(λd)
+Oλ(1).

�

IV. DIFFERENTIAL EQUATIONS AND KURTZ’S THEOREM

The results in the previous section were obtained using the
mean-field analysis which assumes that the queues are i.i.d.
across servers. We will justify the mean-field analysis in this
section.

Again, we will focus on batch-filling. The same results can
be established for batch-sampling and the-power-of-d-choices
by following similar steps. We first consider the following
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non-linear system described by differential equations:

dxi
dt

=

−(1 + λd)xi + xi+1 i ≤ X̄x − 2,

λd(1− αx)

i−1∑
j=0

xj − (1 + λdαx)xi + xi+1, i = X̄x − 1

λdαx

i∑
j=0

xj − xi + xi+1, i = X̄x

−xi + xi+1 otherwise,
(6)

where

X̄x = min

{
j :

j−1∑
l=0

(j − l)xl ≥
1

d

}
and

αx =
1
d −

∑X̄x−2
j=0 (X̄x − 1− j)xj∑X̄x−1

j=0 xj
.

These differential equations are derived from the Markov
chain in Figure 4. View xi as the fraction of queues with
length i. Consider xi for i ≤ X̄x − 2. According to Figure 4,
xi decreases with rate xi × (1 + λd) because the queue size
of a server with size i becomes i−1 with rate 1 and becomes
X̄x − 1 or X̄x with total rate λd; and xi increases with rate
xi+1 because a queue with size i + 1 becomes a queue with
size i with rate 1. Note this is a non-linear system because αx

and X̄x depend on the state x.
We further define

si(t) =

∞∑
j=i

xj(t)

for i ≥ 0, which is related to the fraction of the servers with
queue size ≥ i, and

ŝi =

∞∑
j=i

π̂j

for π̂ defined in (4). Note that s0(t) = 1 for any t. The
differential equations of the non-linear system can be written
in terms of s(t) as follows:

dsi
dt

=
λd− (1 + λd)si + si+1 i ≤ X̄s − 1,

λ− λd
i−1∑
j=0

(1− sj)− si + si+1, i = X̄s

−si + si+1 otherwise,

(7)

where

X̄s = max

i :
i−1∑
j=0

(1− sj) ≤
1

d

 .

The following theorem establishes the equilibrium point and
the stability of this non-linear system. The proof is presented
in the appendix.

Theorem 7. Assume the initial condition s(0) satisfies 1 =
s1(0) ≥ s2(0) ≥ · · · ≥ 0 and (ii) |s(0)| < ∞. Starting from
s(0), the system converges to the equilibrium point ŝ as t→
∞, where | · | is the 1-norm. �

Next define Π
(n)
i (t) to be number of servers with queue

size i in the nth system, and π
(n)
i (t) = 1

nΠ
(n)
i (t) to be the

fraction of servers with queue size i in the nth system. Here we
deliberately reuse notation π because in the steady state, the
fraction of servers with queue size i is equal to the probability
that the queue size of a server is i. However, note that here
π(n)(t) is a random vector instead of a distribution. Define the
vector Γ(n)(t) ∈ N∞ such that its ith component Γ

(n)
i (t) =∑∞

j=i Π
(n)
j (t) is the number of servers whose queue lengths

are at least i, γ(n)(t) = Γ(n)(t)
n , and γ̂ such that γ̂i =

∑∞
j=i π̂j

for π̂ defined in (4).
The following theorem states that γ(n)(t), which is stochas-

tic, coincides with s(t) for any bounded time interval [0, t]
when n → ∞. Here we define Ū to be the space of all
sequences γ such that

1 = γ0 ≥ γ1 ≥ · · · ≥ 0 (8)

with the 1-norm. The proof is presented in the appendix.

Theorem 8. Suppose that γ(n)(0) → s(0) in probability,
where s(0) is a deterministic initial condition such that
s(0) ≥ 0 and |s(0)| <∞. Then the following holds

lim
n→∞

sup
0≤u≤t

|γ(n)(u)− s(u)| = 0 in probability. �

This result is motivated by Kurtz’s theorem [7]. However,
we remark that Π

(n)
i (t) is not a classical density dependent

Markov chain because q(n)
i,j cannot be written in the form of

nβl for some βl independent of n, and γ(n) is an infinite-
dimensional vector. Therefore, the proof of Kurtz’s theorem
does not directly apply. Our proof is a non-trivial extension of
Kurtz’s theorem.

We also remark that |s(0)| =
∑
i ixi(0) < ∞ is related to

the average queue size at a server, so the condition simply
requires the average queue length per server is bounded
initially.

Theorem 7 and Theorem 8 establish the following result:

γ(n)(t)
n→∞−−−−→ s(t)

t→∞−−−→ γ̂, (9)

which further implies that

π(n)(t)
n→∞−−−−→ x(t)

t→∞−−−→ π̂. (10)

A direct consequence of (10) is that if π̂(n) converges to some
π̃ or a subsequence of π̂(n) converges to some π̃, then π̃ = π̂.
The convergence of stationary distributions will be discussed
in the next section.

V. CONVERGENCE OF THE STATIONARY DISTRIBUTIONS

We first present a theorem on the interchange of limits.
The theorem is similar to Theorem 5.1 in [1]. However, [1]
assumes the state space of each system is finite but in our
system, the state space of each queue is the set of nonnegative
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integers. While the proofs are similar, we present it here for
the completeness of the paper.

Theorem 9. Consider a sequence of random processes X(n)

indexed by a scaling parameter n, where X(n) is a vector that
denotes value of the process at time t, and a dynamic system
Ẋ(t) = F(X). Assume X(n) and X̂ satisfy the following
assumptions:
• (A1) Suppose that for any n,

X(n)(t)
w−→ X̂(n), (11)

where X̂(n) is the stationary distribution of the random
process and x−→ denotes the weak convergence.

• (A2) Suppose for each finite t,

X(n)(t)
w−→ X(t), (12)

when
lim
n→∞

X(n)(0) = X(0)

where both X(n)(0) and X(0) are deterministic initial
conditions, and X(0) ∈ X , where X is a set of initial
conditions.

• (A3) Starting from each initial condition X(0) ∈ X ,
assume that

lim
t→∞

X(t) = X̂. (13)

• (A4) Any subsequence of X̂(n) has a subsubsequence
that weakly converges. The limit of any convergent sub-
sequence, denoted by X̄, satisfies P

(
X̄ ∈ X

)
= 1 and

its support is separable.
Then X̂(n) w−→ X̂. �

This result establishes an interchange of limits because from
(A1) and (A2), we have

lim
t→∞

lim
n→∞

X(n)(t) = lim
t→∞

X(t) = X̂.

The theorem says that with additional assumptions, we further
have

lim
n→∞

lim
t→∞

X(n)(t) = X̂.

The proof is presented in the appendix.
By utilizing the result above, we show the convergence of

the stationary distribution in the following theorem.

Theorem 10.
γ̂(n) w−→ γ.

Proof. Define

X = {γ : 1 = γ1 ≥ γ2 ≥ . . . ≥ 0,
∑
i

γi <∞},

which is separable because it is a subspace of l1 = {γ :∑
i |γi| <∞}, which is a separable metric space.
• (A1) holds due to Theorem 1.
• Note limn→∞ γ(n)(0) = s(0) for deterministic initial

conditions γ(n)(0) and s(0) implies that γ(n)(0)→ s(0)
in probability. Therefore, according to Theorem 8, given

deterministic initial conditions γ(n)(0) and s(0) such that
limn→∞ γ(n)(0) = s(0), we have

lim
n→∞

sup
0≤u≤t

|γ(n)(u)− s(u)| = 0 in probability,

which implies weak convergence.
• (A3) is established in Theorem 7.
• To validate (A4), we consider the space Ũ which is the

set of γ satisfying (8) and with the following norm used
in [19]

‖γ − γ′‖ = sup
i≥0

|γi − γ′i|
i

.

Under this norm, space Ũ is compact. Define γ̂
(n)
i =∑∞

j=i π̂
(n)
j where π̂(n) denotes the stationary distribution

of π(n)(t). By Prokhorov’s theorem [2], since Ũ is com-
pact, there exists a subsubsequence for any subsequence
of γ̂(n) that weakly converges to a random vector γ̃
under ‖ · ‖, which is denoted by γ̂(nk). By the Skorohod
representation theorem, there exists a sequence of random
vectors with the same distributions that converge almost
surely. By slight abuse of the notation, we assume γ̂(nk)

converges to γ̃ almost surely. Since 0 ≤ γi ≤ 1, by the
dominated convergence theorem, we have

lim
k→∞

E[|γ̂(nk)
i − γ̃i|] = 0 ∀i. (14)

Define

fk(γ) =

k∑
i=1

γi.

It is easy to verify that fk(·) is a continuous and bounded
function under the 1-norm. According to the definition of
weak convergence, we have

E [
∑
i γ̃i] = limk→∞ E [fk(γ̃)]

= limk→∞ limnk→∞ E
[
fk(γ̂(nk))

]
≤ c, (15)

where the last inequality is due to Theorem 1, which
implies that

P (γ̃ ∈ X ) = 1.

The uniform convergence of the series
∞∑
i=k

E
[∣∣∣γ̂(nk)

i − γ̃i
∣∣∣] (16)

is established in Appendix F. By Tonelli’s theorem,

lim
k→∞

E
[
|γ̂(nk) − γ̃|

]
= 0, (17)

which implies γ̂(nk) converges weakly to γ̃ in 1-norm.
Therefore (A4) holds.

Based on the theorem above, we further have the following
results according to using the same analysis for getting (14)
and (17).

Corollary 11.
lim
n→∞

E[γ̂
(n)
i ] = γ̂i ∀i,
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lim
n→∞

E

[∑
i

γ̂
(n)
i

]
=
∑
i

γ̂i, (18)

and
lim
n→∞

E
[
|γ̂(n) − γ̂|

]
= 0. (19)

In the next corollary, we show that any k queues are
independently and identically distributed with distribution π̂
in the large-system limit, where k is a constant independent
of n. Then the system is said to be π̂-chaotic [16]. We prove
the result by showing that the unique stationary distribution
of k queues that satisfies the detailed balance equations in the
large-system limit has a product form.

Corollary 12. Consider a set of k servers, and without
loss of generality, assume the severs are 1, 2, · · · , k. Let
π(n)(Q1, Q2, · · · , Qk) denote the station distribution of the
queue lengths of these k servers. In the large-system limit, we
have

lim
n→∞

π(n)(Q1, Q2, · · · , Qk) =

k∏
i=1

π̂Qi ,

i.e., the k queues are independently and identically distributed
with distribution π̂. �

VI. SIMULATIONS

In this section, we use simulations to evaluate the perfor-
mance of the three load balancing algorithms in large, but
finite-server, systems.

A. Deterministic Batch Size

We first considered systems with n = 10,000 servers, batch
size m = 100. We evaluated the per-task and per-job delays
of the three algorithms with different probe ratios d. Figures 6
and 7 show the per-task delays and per-job delays, respectively,
when λ = 0.7. Figures 8 and 9 show the per-task delays and
per-job delays, respectively, when λ = 0.9.

From these figures, we have the following observations.
• In terms of per-task delays, batch-filling matches the power-

of-two-choices with d = 1.3 when λ = 0.7 and with d = 1.2
when λ = 0.9. Batch-sampling, on the other hand, requires
d = 1.6 when λ = 0.7 and d = 1.7 when λ = 0.9
to achieve the same per-task delay as the power-of-two-
choices. Furthermore, even with d = 1, the per-task delay
of batch-filling is only slightly larger than that of the power-
of-two-choices; but batch-sampling has much larger per-task
delay when d = 1 (10 versus 3 when λ = 0.9). Note that
the per-job delay of batch-sampling with d = 1 has been
omitted in the figure for readability of the figure.

• Batch-filling performs even better in terms of per-job delays.
As we can see from Figures 7 and 9, batch-filling matches
the power-of-two-choices even with d = 1! We believe this is
because the maximum queue size of batch-filling is smaller
than that of the power-of-two-choices when d = 1 even
though the average queue size is larger. Batch-sampling
requires larger probe ratios to match the per-job delays of the
power-of-two-choices. This is because the maximum queue

size of batch-sampling is larger than that of batch-filling as
shown in Table I.

B. Random Batch Size

In this set of simulations, we evaluated the performance of
algorithms under random batch sizes. We assume the batch
size M is random variable such that with probability 0.5, M
is geometrically distributed with mean 75; and with probability
0.5, M is geometrically distributed with mean 125. The other
settings are the same as those used with fixed batch sizes. The
results for λ = 0.7 are shown in Figures 10 and Figure 11;
and the results for λ = 0.9 are shown in Figures 12 and 13.
We note that the conclusions of our previous simulations do
not change with these modifications.

VII. CONCLUSIONS AND EXTENSION

In this paper, we proposed a new load-balancing algorithm,
named batch-filling, which uses water-filling to attempt to
equalize the load among the sampled servers. The algorithm
provides a much lower sample complexity than the power-
of-two-choices algorithm for the same delay performance.
Specifically, it only needs to sample slightly more than one
queue per task to match the per-job delay of the power-of-
two-choices algorithm.

We remark that the theoretical results of this paper can be
extended to random batch sizes. Let M (n)(t) denote the batch
size at time t in the nth system. Assume M (n)(t) are i.i.d.
across time t. The main results of this paper hold given the
sequence of random variables M(n)

E[M(n)]
converge in distribution,

are uniformly integrable, and M (n)(t) = Θ(log n). In particu-
lar, Theorem 1 can be established by using the same idea that
the Lyapunov drift of water-filling is dominated by random
routing. Lemma 2 also holds because M(n)

E[M(n)]
converge in

probability. The differential equations remain the same under
random batch size, so Theorem 7 is still valid. Finally, it is
easy to verify that Di/(dm) converges in mean as m → ∞,
where m = E[M (n)].
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APPENDIX A
PROOF OF THEOREM 1

We ignore the superscript (n) of Q(n)
k (t) as we will focus

on the nth system. Define the Lyapunov function to be

V (Q(t)) =

n∑
k=1

Q2
k(t).

Let x,y ∈ Nn denote the state of the Markov chains, and qx,y
denote the transition rate from state x to state y. According

to the Foster-Lyapunov theorem for continuous-time Markov
chain (see, for example, Theorem 9.1.8 in [15]), we consider∑

y 6=x

qx,y (V (y)− V (x)) . (20)

Define 1× n vector ek such that ek[k] = 1 and ek[l] = 0 for
any l 6= k. Then

qx,x−ek

(
V ((x− ek)

+
)− V (x)

)
≤ −2xk + 1,

which corresponds to a departure at server k. Next define Ψx

to be the set of possible states of the Markov chain when a
batch arrival occurs when the system is in state x, then

∑
y∈Ψx

qx,y (V (y)− V (x)) ≤(a)
λn

m

(
2
m

n

∑
k

xk +m

)
= 2λ

∑
k

xk + λn,

The inequality (a) can be established by comparing batch-
filling with the load-balancing policy that places the m tasks
to a set of randomly selected m servers, one for each server.
Note that water-filling is the optimal solution to the following
problem:

mina

∑dm
k=1 (ak +Qk)

2

subject to:
∑n
k=1 ak = m

ak ∈ N ∀ k.

Therefore
∑

y∈Ψx
qx,yV (y) is minimized under water-filling,

conditioned on the same set of dm sampled queues, and
inequality (a) holds.

Therefore, we have∑
y 6=x

qx,y (V (y)− V (x)) ≤− (2− 2λ)
∑
k

xk + n+ λn.

Therefore, the Markov chain is positive recurrent according to
the Foster-Lyapunov theorem. Now assume the system is in
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the steady state, then we have

0 =E

∑
y 6=x

qx,y (V (y)− V (x))


≤− (2− 2λ)E

[∑
k

xk

]
+ n+ λn,

which implies that

E

[
1

n

∑
k

xk

]
≤ 1 + λ

(2− 2λ)
≤ 1

1− λ
.

Therefore, the theorem holds by choosing c = 1/(1− λ).

APPENDIX B
PROOF OF LEMMA 2

Without loss of generality, assume server 1 has queue size
i and has been probed. Now given any j ≥ 0, define

Xj =

dm−1∑
k=1

Iφk=j ,

which is the number of probed servers with queue size j
without including server 1, and is the summation of dm − 1
i.i.d. Bernoulli random variables with mean πj . We further
define µj = E[Xj ] = (dm− 1)πj .

Consider any i such that i ≥ Q̄π. The probability that server
1 receives a task in water filling is upper bounded by

E

(m−∑i−1
j=0(i− j)Xj

1 +
∑i
j=0Xj

)+


≤E

(m−∑Q̄π−1
j=0 (Q̄π − j)Xj

1 +
∑Q̄π

j=0Xj

)+
=E

( m
dm−1 −

∑Q̄π−1
j=0 (Q̄π − j) Xj

dm−1

1
dm−1 +

∑Q̄π

j=0
Xj

dm−1

)+ (21)

which converges to(
1
d −

∑Q̄π−1
j=0 (Q̄π − j)πj∑Q̄π

j=0 πj

)+

(22)

as m → ∞ because Xj/(dm − 1) converges to πj in
distribution and the term inside the expectation is bounded
and continuous in terms of Xj/(dm − 1). According to the
definition of Q̄π (3), we know that

1

d
−
Q̄π−1∑
j=0

(Q̄π − j)πj ≤ 0,

so (21)→ 0 and,

qi,j = 0 i ≥ Q̄π and j 6∈ {i, i− 1}. (23)

Now we assume i < Q̄π. In this case, the queue size
of server 1 becomes ≥ Q (Q > i) after water filling with
probability

E

min

1,

(
m− (Q− 1− i)−

∑Q−2
j=0 (Q− 1− j)Xj

1 +
∑Q−1
j=0 Xj

)+

 .

Similar to the analysis above, it can be shown that

m− (Q− 1− i)−
∑Q−2
j=0 (Q− 1− j)Xj

1 +
∑Q−1
j=0 Xj

converges to

1
d −

∑Q−2
j=0 (Q− 1− j)πj∑Q−1

j=0 πj
.

For Q ≥ Q̄π + 1, according to the definition of Q̄π, we
have

1

d
−
Q̄π−1∑
j=0

(Q̄π − j)πj ≤ 0.

For Q = Q̄π,

1
d −

∑Q̄π−2
j=0 (Q̄π − 1− j)πj∑Q̄π−1

j=0 πj
= απ.

For Q ≤ Q̄π − 1,

1
d −

∑Q−2
j=0 (Q− 1− j)πj∑Q−1

j=0 πj

≥
1
d −

∑Q̄π−3
j=0 (Q̄π − 2− j)πj∑Q̄π−2

j=0 πj

≥
∑Q̄π−2
j=0 (Q̄π − 1− j)πj −

∑Q̄π−3
j=0 (Q̄π − 2− j)πj∑Q̄π−2

j=0 πj

=1. (24)

Therefore, for any i < Q̄π and i 6= j, we have

qi,j =

 λdαπ, if j = Q̄π

λd(1− απ), if j = Q̄π − 1
0, otherwise.

(25)

Hence, the lemma holds.

APPENDIX C
PROOF OF THEOREM 7

Motivated by the proof in [10], we consider the following
Lyapunov function

V (t) =

∞∑
i=1

|si(t)− ŝi|.

Define εi = si − ŝi, so the Lyapunov function can be written
as

V (t) =

∞∑
i=1

|εi(t)|.
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We will analyze the upper right-hand derivative

dV (t)

dt
= lim
t′→t+

V (t′)− V (t)

t′ − t
in three different cases.
• In the first case, consider s such that X̄s = Q̄BF . In this

case, the differential equations can be written in terms of
ε in the following form:

dεi
dt

=


−(1 + λd)εi + εi+1 i ≤ Q̄BF − 1,

λd

i−1∑
j=0

εj − εi + εi+1, i = Q̄BF

−εi + εi+1 otherwise.

(26)

Now for i ≤ Q̄BF − 1,

d|εi|
dt


= −(1 + λd)εi + εi+1 if εi > 0,

= (1 + λd)εi − εi+1, if εi < 0,

= |εi+1|, if εi = 0.

which implies that

d|εi|
dt
≤ −(1 + λd)|εi|+ |εi+1| i ≤ Q̄BF − 1.

Similarly, we can obtain that

d|εi|
dt
≤

{
−|εi|+ λd

∑i−1
j=1 |εj |+ |εi+1| if i = Q̄BF ,

−|εi|+ |εi+1| if i > Q̄BF .

Combining the results above and the fact that si(t) → 0
as i→∞ for any t, we conclude in this case,

dV (t)

dt
=

∞∑
i=1

d|εi|
dt
≤ −|ε1|.

• In the second case, consider s such that X̄s > Q̄BF . Then,
similar to the analysis of the first case, we have

dεi
dt
≤ −(1 + λd)|εi|+ |εi+1| ∀ i ≤ Q̄BF − 1. (27)

We next consider two subcases.
– In the first subcase, sQ̄BF ≥ ŝQ̄BF . Note that ŝi = 0

for any i > Q̄BF , so we have
∞∑

i=Q̄BF

d|εi|
dt

=

∞∑
i=Q̄BF

dεi
dt

=

∞∑
i=Q̄BF

dsi
dt

= λ− λd
Q̄BF−1∑
j=0

(1− sj)− sQ̄BF

= λd

Q̄BF−1∑
j=0

εj − εQ̄BF

≤ −|εQ̄BF |+ λd

Q̄BF−1∑
j=0

|εj |. (28)

Combining (27) and (28), we obtain

dV (t)

dt
≤ −|ε1| − |εQ̄BF | ≤ 0.

– In the second subcase, sQ̄BF < ŝQ̄BF . In this case

∞∑
i=Q̄BF+1

d|εi|
dt

=

∞∑
i=Q̄BF+1

dεi
dt

=

∞∑
i=Q̄BF+1

dsi
dt

= λ− λd
Q̄BF∑
j=0

(1− sj)− sQ̄BF+1

= λ− λd
Q̄BF∑
j=0

(1− ŝj)

+ λd

Q̄BF∑
j=0

εj − εQ̄BF+1

≤ λd
Q̄BF∑
j=0

|εj | − |εQ̄BF+1|, (29)

where the last inequality holds due to the definition of
Q̄BF and the fact that εQ̄BF+1(t) = sQ̄BF+1(t) ≥ 0
for any t.
Next, given sQ̄BF < ŝQ̄BF , we have

d|εQ̄BF |
dt

=−
dsQ̄BF

dt
=− λd+ (1 + λd)sQ̄BF − sQ̄BF+1

=− λd+ (1 + λd)ŝQ̄BF
+ (1 + λd)εQ̄BF − εQ̄BF+1

≤− (1 + λd)|εQ̄BF |+ |εQ̄BF+1|, (30)

where the last inequality holds because εQ̄BF < 0, and

− λd+ (1 + λd)ŝQ̄BF

=− λd+ (1 + λd)
(

1− (1− λ)(1 + λd)Q̄BF−1
)

=1− (1− λ)(1 + λd)Q̄BF

≤1− (1− λ)
1

1− λ
= 0.

Combining inequalities (27), (29) and (30), we obtain

dV (t)

dt
≤ −|ε1| ≤ 0.

• In the third case, consider s such that X̄s < Q̄BF . In this
case, we first have

∞∑
i=Q̄BF+1

d|εi|
dt

=

∞∑
i=Q̄BF+1

dsi
dt

= −|εQ̄BF+1|, (31)

and

dεi
dt
≤ −(1 + λd)|εi|+ |εi+1| ∀ i < X̄s. (32)

We next further consider the following subcases.
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– Assume sX̄s
< ŝX̄s

, so

d|εX̄s
|

dt
= −λ+ λd

X̄s−1∑
j=0

(1− sj) + sX̄s
− sX̄s+1

Note that ŝi− ŝi+1 = λd(1− ŝi) for any i < Q̄BF , so

d|εX̄s
|

dt
=− λ+ λd

X̄s∑
j=0

(1− ŝj)

− λd
X̄s−1∑
j=0

εj + εX̄s
− εX̄s+1

≤− λ+ λd

X̄s∑
j=0

(1− ŝj)

+ λd

X̄s−1∑
j=0

|εj | − |εX̄s
|+ |εX̄s+1|. (33)

Next for X̄s < i < Q̄BF , we have

dεi
dt

=− si + si+1

=− ŝi + ŝi+1 − εi + εi+1

=λd− λdŝi − εi + εi+1,

which implies that

d|εi|
dt
≤ λd(1− ŝi)− |εi|+ |εi+1| ∀ X̄s < i < Q̄BF .

(34)

For i = Q̄BF , we have

dεQ̄BF
dt

=− sQ̄BF + sQ̄BF+1

=− ŝQ̄BF + ŝQ̄BF+1 − εQ̄BF + εQ̄BF+1

=λ− λd
Q̄BF−1∑
j=0

(1− ŝj)− εQ̄BF + εQ̄BF+1,

which implies that

d|εQ̄BF |
dt

≤ λ− λd
Q̄BF−1∑
j=0

(1− ŝj)− |εQ̄BF |+ |εQ̄BF+1|.

(35)

Summing inequalities (31) - (35), we

dV (t)

dt
≤ −|ε1| ≤ 0.

– Assume sX̄s
≥ ŝX̄s

, then

d|εX̄s
|

dt
=λ− λd

X̄s−1∑
j=0

(1− sj)− sX̄s
+ sX̄s+1

=λ− λd
X̄s∑
j=0

(1− sj) + λd(1− sX̄s
)− sX̄s

+ sX̄s+1

≤(a)λd− (1 + λd)sX̄s
+ sX̄s+1

≤− (1 + λd)|εX̄s
|+ |εX̄s+1|, (36)

where inequality (a) holds due to the definition of X̄s,
and the last inequality holds because

λd− (1 + λd)ŝX̄s
+ ŝX̄s+1 = 0

when X̄s < Q̄BF .
The summation of (34) and (35) yields that

Q̄BF∑
i=X̄s+1

d|εi|
dt
≤λ− λd

X̄s∑
j=0

(1− ŝj)− |εX̄s+1|+ |εQ̄BF+1|

≤λ− λd
X̄s∑
j=0

(1− sj)

− λd
X̄s∑
j=0

εj − |εX̄s+1|+ |εQ̄BF+1|

≤λd
X̄s∑
j=0

|εj | − |εX̄s+1|+ |εQ̄BF+1|,

(37)

where the last inequality holds due to the definition of
X̄s. The summation of (31), (32), (36) and (37) yields

dV (t)

dt
≤ −|ε1| ≤ 0.

In a summary, we have shown that

dV (t)

dt

{
≤ 0, if s(t) 6= ŝ
= 0, otherise. (38)

Next define i∗ = min{i : εi < 0}. If such an i∗ exists,
since ŝi = 0 for any i > Q̄BF , i

∗ ≤ Q̄BF . Furthermore, if
X̄s < Q̄BF , then i∗ ≤ X̄s. It is easy to verify that when i∗

exists,

d|εi∗−1|
dt

=
dεi∗−1

dt
= −(1 + λd)|εi∗−1| − |εi∗ |.

Since the following bound has been used throughout in the
proof

d|εi∗−1|
dt

≤ −(1 + λd)|εi∗−1|+ |εi∗ |,

when i∗ exits, we can further obtain

dV (t)

dt
≤ −|ε1| − |εi∗ |, (39)

which implies

dV (t)

dt


= 0, if s(t) = ŝ.
< 0, if si(t) < ŝi for some i
< 0, if s1(t) > ŝ1

≤ 0, if si(t) ≥ ŝi ∀i and s1(t) = ŝ1.

(40)

The result above shows that |s(t)− ŝ| is non-increasing.
For any x such that |x| <∞, we define

Sx = {y : |yn| ≤ |xn| for all n} .

Then we can see that Sx is compact since we can approximate
the tail with ε/2 and the first finitely-many elements are
in an equivalent Euclidean space and hence the the finite-
dimensional part is totally bounded with the remaining ε/2
as well.
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Since |s(t)− ŝ| is non-increasing, given a fixed r > 0 and
initial condition s(0) ∈ B̄(ŝ, r), where

B̄(ŝ, r) = {s ∈ X : ‖s− s̄‖ ≤ r} ,

we have
|s(t)| ≤ r + |ŝ| ∀ t.

Since s1(t) ≥ s2(t) ≥ . . . ≥, there exists N(r) such that for
any i ≥ N(r) and any t ≥ 0,

si(t) ≤
1

d
,

ṡi+1(t) ≤ 0.

Now consider any initial state s(0) ∈ X . Let r = ‖s(0)− ŝ‖
and

s′i =

{
1 if i ≤ N(r),

si(0) if i > N(r).

Then s′ ∈ X . Let Ω = B̄(ŝ, r) ∩ Ss′ . Since both B̄(ŝ, r) and
Ss′ are closed and Ss′ is compact, we have that Ω is compact.
Also note that for any initial state s(0) ∈ Ω we have s(t) ∈ Ω
as well, so Ω is positive invariant and compact.

Furthermore, given s(t) such that s1(t) = ŝ1 and si(t) ≥
ŝi(i ≥ 2) , it can be easily shown that s1(t + δt) > ŝ1 for a
sufficiently small δt unless s(t) = ŝ. The result can be proved
by following the idea of LaSalle’s invariance principle [8].

APPENDIX D
PROOF OF THEOREM 8

Recall the definition of Π(n)(t) ∈ N∞ where the ith com-
ponent Π

(n)
i (t) is the number of servers whose queue lengths

are equal to i. Since Π(n)(t) can be uniquely determined by
Γ(n)(t) and vice versa, and Π(n)(t) is a Markov chain, Γ(n)(t)
is a Markov chain and we have

Γ(n)(t) = Γ(n)(0) +
∑

L∈N∞
LNL

(∫ t

0

R
(n)
L (Γ(n)(u)) du

)
,

(41)

where NL(x) are independent standard Poisson processes and
R

(n)
L (Γ) is the transition rate of the Markov chain from state

Γ to state Γ + L. For example, given

L = (0,−1, 0, · · · , )′,

which corresponds to the event that there is a departure from
a server with queue size 1,

R
(n)
L (Γ(n)) = Γ

(n)
1 − Γ

(n)
2

because there are Γ
(n)
1 − Γ

(n)
2 servers with queue size 1.

Dividing by n on both sides of equation (41), we get

γ(n)(t) = γ(n)(0) +
∑

L∈N∞

L

n
NL

(∫ t

0

R
(n)
L (nγ(n)(u)) du

)
.

Now define Bn(t) to be the total number of batch arrivals
within time interval [0, t] in the nth system. Then Bn(t) =

N( nmλt), i.e., a Poisson random variable with mean n
mλt.

Define event Bn,α to be

Bn,α =
{
Bn(t) ≤ (1 + α)

n

m
λt

and
∑
i

γ
(n)
i (0) ≤ (1 + α)

∑
i

si(0)

}
.

Applying the Chernoff bound, we obtain

P
(
Bn(t) ≤ (1 + α)

n

m
λt
)
≥ 1− e− n

mλth(α),

where h(α) = (1 + α) log(1 + α)− α. Also

lim
n→∞

P

(∑
i

γ
(n)
i (0) ≤ (1 + α)

∑
i

si(0)

)
= 1

because γ(n)(0) converges to s(0) in probability according to
the assumption of the theorem. Thus, we have

lim
n→∞

P (Bn,α) = 1.

Note that n
∑
i γ

(n)
i (u) is the total number of tasks in the

system at time u. When Bn,α occurs,

max
0≤u≤t

∑
i

γ
(n)
i (u) ≤ (1 + α)

(
λt+

∑
i

si(0)

)
.

Define Cα = (1 + α)(λt +
∑
i si(0)). When the inequality

above holds, we have

γ
(n)
i (u) =

∞∑
j=i

π
(n)
j (u) ≤ Cα

i
∀ 0 ≤ u ≤ t, ∀i, (42)

which further implies that for k =

⌈
Cα

1
2 (1− 1

d )

⌉
, we have

γ
(n)
i (u) ≤ 1

2

(
1− 1

d

)
∀ 0 ≤ u ≤ t, ∀i ≥ k. (43)

Next we define the following four sets:
• T +

n : the set of L such that L ≥ 0, which is the set of L
related to arrivals,

• L+
n : the set of L such that L ≥ 0 and Li = 0 for

i ≥ k + 1.
• T −n : the set of L such that L ≤ 0, which is the set of L

related to departures.
• L−n : the set of L ≤ 0 and Li = 0 for i ≥ m.

We further define N̄L(a) = NL(a) − a, which is a centered
Poisson process. Then we have

γ(n)(t)

= γ(n)(0) +∑
L∈(T +

n ∪T −n )\(L+
n∪L−n )

L

n
NL

(∫ t

0

R
(n)
L (nγ(n)(u)) du

)
+

∑
L∈L+

n∪L−n

L

n
N̄L

(∫ t

0

R
(n)
L (nγ(n)(u)) du

)
+

∑
L∈L+

n∪L−n

L

n

∫ t

0

R
(n)
L (nγ(n)(u)) du.
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Define s(t) to be the solution of the differential equations
(7) with initial condition s(0), and F(s) such that the nonlinear
differential equations in (7) are given by

ds

dt
= F(s).

Following the idea behind the proof of Kurtz’s theorem (see
[5] for an easy exposition), we have

sup
0≤u≤t

∣∣∣γ(n)(u)− s(u)
∣∣∣ (44)

≤
∣∣∣γ(n)(0)− s(0)

∣∣∣ (45)

+ sup
0≤u≤t

∣∣∣∣∣∣
∑

L 6∈(L+
n∪L−n )

L

n
NL

(∫ u

0

R
(n)
L (nγ(n)(τ)) dτ

)∣∣∣∣∣∣
(46)

+ sup
0≤u≤t

∣∣∣∣∣∣
∑

L∈L+
n∪L−n

L

n
N̄L

(∫ u

0

R
(n)
L (nγ(n)(τ)) dτ

)∣∣∣∣∣∣
(47)

+ sup
0≤u≤t

∣∣∣∣∣∣
∑

L∈L+
n∪L−n

L

n

∫ u

0

R
(n)
L (nγ(n)(τ)) dτ

−
∫ u

0

F(γ(n)(τ)) dτ

∣∣∣∣ (48)

+ sup
0≤u≤t

∣∣∣∣∫ u

0

F(γ(n)(τ)) dτ −
∫ u

0

F(s(τ)) dτ

∣∣∣∣ . (49)

According to Lemmas 13-15, we obtain that there exists n̄
such that for any n ≥ n̄,

P
(

sup
0≤u≤t

(∣∣∣γ(n)(u)− s(u)
∣∣∣−∣∣∣∣∫ u

0

F(γ(n)(τ))− F(s(τ)) dτ

∣∣∣∣) ≥ 4δ

)
≤P

(∣∣∣γ(n)(0)− s(0)
∣∣∣ > δ

)
+ 3(1− P (Bn,α))

+ 4mk max
{
e
− n
mλth( δ

(m+1)kλt
)
, e−nth( δ

2mkt
)
}

+
λt

δ
e−

(d−1)2

2(d+1)
m +

λtCα
δm

,

which converges to zero as n→∞ since m = Θ(log n).
Let

Bn =

{
sup

0≤u≤t

(∣∣∣γ(n)(u)− s(u)
∣∣∣−∣∣∣∣∫ u

0

F(γ(n)(τ))− F(s(τ))dτ

∣∣∣∣) ≤ 4δ

}
.

Then P(Bn) → 1 as n → ∞. When Bn occurs, for any
u ∈ [0, t],∣∣∣γ(n)(u)− s(u)

∣∣∣ ≤ 4δ +

∣∣∣∣∫ u

0

F(γ(n)(τ))− F(s(τ))dτ

∣∣∣∣
≤ 4δ +M

∫ u

0

∣∣∣γ(n)(τ)− s(τ)
∣∣∣ dτ,

where the last inequality holds because F(s) is Lipschitz
as shown in Lemma 16. By Gronwall’s inequality we have

∣∣γ(n)(u)− s(u)
∣∣ ≤ 4δeMu for any u ∈ [0, t]. Thus

P
(

sup
0≤u≤t

∣∣∣γ(n)(u)− s(u)
∣∣∣ ≤ 4δeMt

)
≥ P(Bn)→ 1

as n→∞.

Lemma 13.

P ((46) > δ) ≤ λt

δ
e−

(d−1)2

2(d+1)
m +

λtCα
δm

+ 2(1− P (Bn,α)).

Proof. Note that L ∈ T +
n \ L+

n occurs when a task is
dispatched to a queue with size at least k. Under condition
(43), when a batch arrival occurs,

P

 ⋃
L∈T +

n \L+
n

{nγ → nγ + L}


≤ P (dm− Zk < m) = P (Zk > (d− 1)m)

≤ e−
(d−1)2

2(d+1)
m,

where Zk is the number of servers probed with queue size at
least k and the last inequality is obtained from the Hoeffding’s
inequality for sampling without replacement. Therefore, we
have

P

 sup
0≤u≤t

∣∣∣∣∣∣
∑

L∈T +
n \L+

n

L

n
NL

(∫ u

0

R
(n)
L (nγ(n)(τ)) dτ

)∣∣∣∣∣∣ ≥ δ


≤P

 sup
0≤u≤t

m

n
N

∫ u

0

∑
L∈T +

n \L+
n

R
(n)
L (nγ(n)(τ)) dτ

 ≥ δ


≤(a) P

m
n
N

∫ t

0

∑
L∈T +

n \L+
n

R
(n)
L (nγ(n)(τ)) dτ

 ≥ δ


≤P

m
n
N

∫ t

0

∑
L∈T +

n \L+
n

R
(n)
L (nγ(n)(τ)) dτ

 ≥ δ⋂Bn,α


+ 1− P(Bn,α)

≤P
(
m

n
N

(
n

m
λte−

(d−1)2

2(d+1)
m

)
≥ δ
)

+ 1− P(Bn,α)

≤λt
δ
e−

(d−1)2

2(d+1)
m + 1− P(Bn,α),

where inequality (a) holds because N(t) is nondecreasing
with t and the last inequality is obtained from the Markov
inequality.
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Similarly, we can also obtain

P

 sup
0≤u≤t

∣∣∣∣∣∣
∑

L∈T −n \L−n

L

n
NL

(∫ u

0

R
(n)
L (nγ(n)(τ)) dτ

)∣∣∣∣∣∣ ≥ δ


≤P

 1

n
N

∫ t

0

∑
L∈T −n \L−n

R
(n)
L (nγ(n)(τ)) dτ

 ≥ δ


≤P

B(n, α)
⋂ 1

n
N

∫ t

0

∑
L∈T −n \L−n

R
(n)
L (nγ(n)(τ)) dτ

 ≥ δ


+ 1− P(Bn,α)

≤P
(

1

n
N

(
nλt

Cα
m

)
≥ δ
)

+ 1− P(Bn,α)

≤λtCα
δm

+ 1− P(Bn,α).

Lemma 14.

P ((47) > δ) ≤ 4mk max
{
e
− n
mλth( δ

(m+1)kλt
)
, e−nth( δ

2mkt
)
}
.

Proof. Note that |L+
n ∪L−n | ≤ mk +m ≤ 2mk. For L ∈ L+

n ,

P
(

sup
0≤u≤t

∣∣∣∣Ln N̄L

(∫ u

0

R
(n)
L (nγ(n)(τ)) dτ

)∣∣∣∣ > δ

2mk

)
≤P

(
sup

0≤u≤t

m

n

∣∣∣N̄L

( n
m
λu
)∣∣∣ > δ

2mk

)
≤2e−

n
mλth( δ

2mkλt
),

where the last inequality follows from Proposition 5.2 in [5].
Similarly, for L ∈ L−n ,

P
(

sup
0≤u≤t

∣∣∣∣Ln N̄L

(∫ u

0

R
(n)
L (nγ(n)(τ)) dτ

)∣∣∣∣ > δ

2mk

)
≤P

(
sup

0≤u≤t

1

n

∣∣N̄L (nu)
∣∣ > δ

2mk

)
≤2e−nth( δ

2mkt
).

Combining the results above and using the union bound, we
obtain

P ((47) > δ) ≤ 4mk max
{
e
− n
mλth( δ

(m+1)kλt
)
, e−nth( δ

2mkt
)
}
.

Lemma 15. There exists n̄ such that for any n ≥ n̄,

P ((48) > δ) ≤ 1− P (Bn,α) .

Proof. To study (48) under condition (42), we define

F(n)(γ) =
1

n

∑
L∈L+

n∪L−n

LR
(n)
L (nγ),

and consider∣∣∣F(n)(γ)− F(γ)
∣∣∣ =

∑
i

∣∣∣F (n)
i (γ)− Fi(γ)

∣∣∣ . (50)

We divide the analysis into the following cases:
• For i > m, Li = 0 for any L ∈ L+

n ∪L−n , which implies
F

(n)
i (γ) = 0 and∑
i>m

∣∣∣F (n)
i (γ)− Fi(γ)

∣∣∣ =
∑
i>m

Fi(γ) = γm+1 ≤
Cα
m
.

• For m ≥ i > k,

F
(n)
i (γ) = −γi + γi+1,

which implies that∣∣∣F (n)
i (γ)− Fi(γ)

∣∣∣ = 0.

• For k ≥ i,

F
(n)
i (γ) =

1

n

(
λn

m
E[Di|γ]− nγi + nγi+1

)
= λdE

[
Di

dm

∣∣∣∣γ]− γi + γi+1,

where Di is a random variable denoting the change in the
number of servers with queue size at least i after water
filling. Therefore,∣∣∣F (n)

i (γ)− Fi(γ)
∣∣∣ = λdE

[
Di

dm

∣∣∣∣γ] .
Recall Zi to be the number of probed servers with queue
size at least i, so Di is a function of Zj (j ≤ i).
Specifically,

Di = min

dm− Zi,
m− i−1∑

j=0

(dm− Zj)

+ .

(51)

Therefore,

Di

dm
= min

dm− Zidm
,

1

d
−

i−1∑
j=0

(
1− Zj

dm

)+ .

Applying the Hoeffding’s inequality for sampling without
replacement, we have that

P
(
|Zi − γidm| ≥

√
m logm

)
≤ 2e−2 logm

d =
2

m2/d
,

which implies that

P
(
|Zi − γidm| ≤

√
m logm ∀i ≤ k

)
≥ 1− 2k

m2/d
.

Given |Zi − γidm| ≤
√
m logm for all i ≤ k, we can

obtain∣∣∣∣∣∣E
[
Di

dm

∣∣∣∣γ]−min

1− γi,

1

d
−

i−1∑
j=0

(1− γj)

+
∣∣∣∣∣∣

≤k
√

logm

d
√
m

.

By summarizing the cases above, we obtain that under condi-
tion (42) ∣∣∣F(n)(γ)− F(γ)

∣∣∣ ≤ Cα
m

+
k
√

logm

d
√
m

.



18

Therefore, given δ, there exists mδ such that for any m ≥ mδ,

sup
0≤u≤t

∣∣∣∣∫ u

0

F(n)(γ(n)(τ)) dτ −
∫ u

0

F(γ(n)(τ)) dτ

∣∣∣∣
≤t
(
Cα
m

+
k
√

logm

d
√
m

)
≤ δ.

So for sufficient large n,

P
(

sup
0≤u≤t

∣∣∣∣∫ u

0

F(n)(γ(n)(τ)) dτ −
∫ u

0

F(γ(n)(τ)) dτ

∣∣∣∣ > δ

)
≤1− P (Bn,α) .

Lemma 16. F(s) is Lipschitz.

Proof. Consider s, s′ ∈ N∞. Without loss of generality X̄s ≤
X̄s′ . Define

hi(s) = Fi(s)− si + si+1.

Then

|F(s)− F(s′)|

=

∞∑
i=1

|Fi(s)− Fi(s′)|

≤
∞∑
i=1

(
|si − s′i|+ |si+1 − s′i+1|+ |hi(s)− hi(s′)|

)
≤2|s− s′|+

∞∑
i=1

|hi(s)− hi(s′)|.

Recall that Fi(s) = −si + si+1 for i > X̄s and Fi(s) =
λd− (1 + λd)si + si+1 for i < X̄s, so

|F(s)− F(s′)|

≤2|s− s′|+ λd

X̄s−1∑
i=1

|si − s′i|+
X̄s′∑
i=X̄s

|hi(s)− hi(s′)|.

We next consider two cases. If hX̄s
(s) ≤ hX̄s

(s′), then

X̄s′∑
i=X̄s

|hi(s)− hi(s′)|

=λd− λds′X̄s
− λ+ λd

X̄s−1∑
j=1

(1− sj)

+ λd

X̄s′−1∑
i=X̄s+1

(1− s′i)

+ λ− λd
X̄s′−1∑
j=1

(1− s′j)

=λd

X̄s−1∑
j=1

(s′j − sj)

≤λd
X̄s−1∑
j=1

|s′j − sj |

≤λd|s− s′|.

If hX̄s
(s) > hX̄s

(s′), then

X̄s′∑
i=X̄s

|hi(s)− hi(s′)|

=− λd+ λds′X̄s
+ λd− λdsX̄s

+ λ− λd
X̄s∑
j=1

(1− sj)

+ λ− λd
X̄s∑
j=1

(1− s′j)− λ+ λd

X̄s∑
j=1

(1− sj)

+ λ− λd
X̄s∑
j=1

(1− sj)

≤λd|s′X̄s
− sX̄s

|+ λd

X̄s∑
j=1

|s′j − sj |

≤2λd|s− s′|,

where the first inequality holds because

λ− λd
X̄s∑
j=1

(1− sj) ≤ 0

according to the definition of X̄s.
Combining the results above, we obtain that

|F(s)− F(s′)| ≤ (2 + 3λd)|s− s′|.

Therefore, the lemma holds.

APPENDIX E
PROOF OF THEOREM 9

Let X̂(nk) denote the weak convergence subsequence in
assumption (A4). By (A1) and the Skorohod representation
theorem, there exists {X̃(nk)} and X̃ such that
• X̃(nk) =d X̂(nk),
• X̃ =d X̄, and
• X̃(nk) converges to X̃ almost surely.
Now let X(nk)(0) = X̃(nk), i.e., the nkth system starts at a

random initial condition specified by its stationary distribution,
which implies that

X(nk)(t) =d X̃(nk) ∀t.

Denote by X(t) the random state of the dynamical system
starting from the random initial condition X̃. According to
(A2), for any deterministic initial condition in X ,

X(nk)(t)
w−→ X(t).

By the definition of weak convergence, for a bounded contin-
uous function f,

lim
n→∞

E
[
f(X(nk)(t))|X(nk)(0) = X̃(nk)

]
=E

[
f(X(t))|X(nk)(0) = X̃

]
.

Since f is bounded, further by the bounded convergence
theorem and the fact that P

(
X̃ ∈ X

)
= P

(
X̄ ∈ X

)
= 1,

we have

lim
n→∞

E
[
f(X(nk)(t))

]
= E [f(X(t))] ,
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which implies that X(nk)(t) converges weakly to X(t) for any
t.

Since X(nk)(t) =d X̂(nk) ∀t, we further have X(t) =d

X̄ ∀t. Now according to (A3), the dynamical system converges
to X̂ starting from any initial condition in X , which implies
X(t) converges to X̂ almost surely and also implies that X(t)
converges weakly to X̂. Therefore, X̄ is a point mass at X̂,
which implies that X̂(nk) converges weakly to X̂. Since this
holds for any convergent subsequence, the theorem holds.

APPENDIX F
UNIFORM CONVERGENCE OF THE SERIES (16)

First since
∑∞
i=1 E [γ̃i] ≤ c according to (15) and E [γ̃i] ≥ 0

for all i, the sequence sb =
∑b
i=1 E [γ̃i] is bounded above and

increasing, so s̄ = limb→∞ sb exits. Therefore, given any ε,
there exists b̃ε such that for any b ≥ b̃ε,

∞∑
i=b+1

E [γ̃i] = s̄− sb ≤ ε. (52)

Next we establish an upper bound on
∞∑

i=b+1

E
[
γ̂

(nk)
i

]
using the Lyapunov-drift analysis at the steady state. Since

∞∑
i=1

E
[
γ̂

(nk)
i

]
≤ c

for any nk and E
[
γ̂

(nk)
i

]
is decreasing,

E
[
γ̂

(nk)
i

]
≤ c

i
for any i and any nk. According to Markov’s inequality, we
have

P
(
γ̂

(nk)
i ≥ d− 1

2d

)
≤ c

i

2d

d− 1
. (53)

Now consider the nkth system and define a Lyapunov
function to be

V (Q(t)) =

nk∑
j=1

((Qj(t)− b+ 1)+)2,

where b > 0 and the superscript (nk) of Q is ignored to
simplify the notation. Let x,y ∈ Nnk denote the state of
the Markov chains, and qx,y denote the transition rate from
state x to state y. According to the Foster-Lyapunov theorem
for continuous-time Markov chain (see, for example, Theorem
9.1.8 in [15]), we consider∑

y 6=x

qx,y (V (y)− V (x)) . (54)

Recall that ej is a 1 × nk vector such that ej [j] = 1 and
ej [l] = 0 for any l 6= j. Then

qx,x−ej

(
V ((x− ej)

+
)− V (x)

)
=

 0, if xj ≤ b− 1
−1, if xj = b
−2(xj − b)− 1, if xj > b

≤− 2(xj − b)+,

which corresponds to a departure at server j.
Next define Ψx to be the set of possible states of the Markov

chain when a batch arrival occurs and the system is in state
x. Consider ∑

y∈Ψx

qx,y (V (y)− V (x)) .

We note that batch-filling is one of the optimal solutions to
the following problem:

mina

∑dm
k=1

(
(ak + xk − b+ 1)

+
)2

subject to:
∑n
k=1 ak = m

ak ∈ N ∀ k,

where {xk}k=1,··· ,dm are the sizes of the probed dm queues.
In other words, given x and the set of dm probed servers, the
batch-filling minimize V (y). This can be proved by showing
that any task assignment can be modified to the batch-filling
solution, by iteratively moving new tasks from large queues
to small queues, without increasing the value of the objective
function.

Given any b > 2, we consider the following two cases.
• First consider x such that

x ∈ Ωb :=

x :
∑
j

Ixj≤b−2 ≥ nk
d+ 1

2d

 .

In other words, at least (d+1)/2d fraction of servers with
queue size at most b− 2.
Define Ψ̃x to be the set of possible states of the Markov
chain under batch-sampling when a batch arrival occurs
and the system is in state x, and q̃x,y to be the correspond-
ing transition rate. Since batch-filling minimizes V (y) for
any given set of probed server, we have∑
y∈Ψx

qx,y (V (y)− V (x)) ≤
∑

y∈Ψ̃x

q̃x,y (V (y)− V (x)) .

Now under batch-sampling, a server may receive one (and
at most one) task if it is probed. Consider server j such that
xj ≥ b − 1. Server j is probed with probability dm/nk,
and will receive one task if it is among the m least loaded
queues in the md probed queues. Conditioned on server j
is probed, define Gb−2 to be the number of probed servers
with queue size at most b − 2 among the other dm − 1
servers. According to Hoeffding’s inequality for sampling
without replacement, we get

P(Gb−2 < m) ≤ e−
(d−1)2

2d m.

Therefore, we conclude that∑
y∈Ψx

qx,y (V (y)− V (x))

≤
∑
j

λnk
m
× dm

nk
× e−

(d−1)2

2d m (2(xj − b+ 1) + 1)
+

≤
∑
j

λde−
(d−1)2

2d m
(
2(xj − b)+ + 3

)
.
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Note that (yj − b + 1)+ = 0 for any queue j such that
xj ≤ b − 2 since each server is given at most one task
under batch-sampling.

• Consider x such that x 6∈ Ωb, i.e.,∑
j

Ixj≤b−2 < nk
d+ 1

2d
.

In this case, we compare batch-filling with the randomized
load-balancing algorithm that places m tasks in a set
of randomly selected m servers, one for each server.
According to the analysis in the proof of Theorem 1, we
have ∑

y∈Ψx

qx,y (V (y)− V (x))

≤ λnk
m

m+ 2
m

nk

∑
j

(xj − b+ 1)
+


= λnk +

∑
j

2λ (xj − b+ 1)
+

≤ 3λnk +
∑
j

2λ (xj − b)+

Combining the results above, we have that∑
y 6=x

qx,y (V (y)− V (x))

≤
∑
j

−2

(
1− λmax{1, de−

(d−1)2

2d m}
)

(xj − b)++

3nkλde
− (d−1)2

2d m P(x ∈ Ωb) + 2λnk P(x 6∈ Ωb).

Recall that the Markov chain is positive recurrent according
to Theorem 1. Assume the system is in the steady state, then
we have

0 =E

∑
y 6=x

qx,y (V (y)− V (x))

 ,
which implies that

E

 1

nk

∑
j

(xj − b)+


≤3λde−

(d−1)2

2d m P(x ∈ Ωb) + 2λP(x 6∈ Ωb)

2
(

1− λmax{1, de−
(d−1)2

2d m}
) .

Now given any 0 < ε < 1, define nε such that for any
n ≥ nε

3λde−
(d−1)2

2d m

2 (1− λ)
≤ ε

2
and de−

(d−1)2

2d m ≤ 1.

Such nε exists because m = Θ(log n) and m is increasing
function of n. Furthermore, define bε such that for any b ≥ bε
and in the steady state of any nkth system,

2λP(x 6∈ Ωb)

2 (1− λ)
≤ ε

2
.

Such bε exists, independent of nk, due to inequality (53).

Furthermore, we note that

E

 1

nk

∑
j

(xj − b)+

 =

∞∑
i=b+1

E
[
γ̂

(nk)
i

]
.

Therefore, given any 0 < ε < 1, there exist bε and nε such
that for any b ≥ bε and nk ≥ nε, the following inequality
holds:

∞∑
i=b+1

E
[
γ̂

(nk)
i

]
≤ ε.

Combining the result above and result (52), we conclude
that given any 0 < ε < 1, for any nk ≥ nε/2 and
b ≥ max{bε/2, b̃ε/2},∑∞

i=b+1 E
[∣∣∣γ̂(nk)

i − γ̃i
∣∣∣]

≤
∑∞
i=b+1 E

[
γ̂

(nk)
i

]
+
∑∞
i=b+1 E [γ̃i] ≤ ε,

which concludes the proof.

APPENDIX G
PROOF OF COROLLARY 12

To simplify the notation, we assume k = 2, the analysis for
k > 2 is almost identical and hence omitted here. Now for
the nth system, we define S(n) = {i : i > 2}, i.e., the set of
all servers except servers 1 and 2. We consider the following
Markov chain (Q

(n)
1 (t), Q

(n)
2 (t),η(n)(t)), where

η
(n)
i (t) =

∑
i∈S(n) I

Q
(n)
i (t)=i

n− 2

=
Π

(n)
i (t)− I

Q
(n)
1 (t)=i

− I
Q

(n)
2 (t)=i

n− 2
,

i.e., the fraction of servers with queue size i in S(n). Recall
that Q(n)

1 (t) is the queue length of the first server in the nth
system, Q(n)

2 (t) is the queue length of the second server in
the nth system, and Q̂

(n)
1 and Q̂

(n)
2 are the queue lengths in

the steady state. Denote by

π(n) (x, y,η) = P
(

(Q̂
(n)
1 , Q̂

(n)
2 , η̂(n)) = (x, y,η)

)
,

i.e., the stationary distribution of the Markov chain. For the nth
system, the global balance equation for a given state (x, y,η)
is

π(n) (x, y,η)
∑

(x̃,ỹ,η̃) 6=(x,y,η)

r
(n)
(x,y,η)(x̃, ỹ, η̃)

=
∑

(x̃,ỹ,η̃)6=(x,y,η)

π(n) (x̃, ỹ, η̃) r
(n)
(x̃,ỹ,η̃)(x, y,η),

where r(n)
(x,y,η)(x̃, ỹ, η̃) is the transition rate from state (x, y,η)

to (x̃, ỹ, η̃) in the nth system, which further implies that∑
η

∑
(x̃,ỹ,η̃)6=(x,y,η)

π(n) (x, y,η) r
(n)
(x,y,η)(x̃, ỹ, η̃)

=
∑
η

∑
(x̃,ỹ,η̃)6=(x,y,η)

π(n) (x̃, ỹ, η̃) r
(n)
(x̃,ỹ,η̃)(x, y,η). (55)
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Note that for (x̃, ỹ, η̃) such that x̃ = x and ỹ = y,∑
η

∑
η̃ 6=η

π(n) (x, y,η) r
(n)
(x,y,η)(x, y, η̃)

=
∑
η

∑
η̃ 6=η

π(n) (x, y, η̃) r
(n)
(x,y,η̃)(x, y,η) (56)

by exchanging the notations η and η̃. Furthermore, to transit
to a state with x̃ > x and ỹ > y, server 1 and server 2 need
to be both probed, so∑
x̃>x,ỹ>y

r
(n)
(x,y,η)(x̃, ỹ, η̃) ≤ λ n

m

dm(dm− 1)

n(n− 1)
= Θ

(m
n

)
,

which implies that∑
η

π(n) (x, y,η)
∑

x̃>x,ỹ>y

r
(n)
(x,y,η)(x̃, ỹ, η̃) = O

(m
n

)
(57)

since
∑

η π
(n) (x, y,η) ≤ 1. Similarly, we have∑

η

∑
x̃<x,ỹ<y

π(n) (x̃, ỹ, η̃) r
(n)
(x̃,ỹ,η̃)(x, y,η) = O

(m
n

)
. (58)

Note that

r
(n)
(x,y,η)(x− 1, y,η) = r

(n)
(x,y,η)(x, y − 1,η) = 1,

so ∑
η

π(n) (x, y,η) r
(n)
(x,y,η)(x− 1, y,η)

=
∑
η

π(n) (x, y,η) r
(n)
(x,y,η)(x, y − 1,η)

= π(n)(x, y), (59)

∑
η

π(n) (x+ 1, y,η) r
(n)
(x+1,y,η)(x, y,η) = π(n) (x+ 1, y) ,

(60)

and∑
η

π(n) (x, y + 1,η) r
(n)
(x,y+1,η)(x, y,η) = π(n) (x, y + 1) .

(61)

Now we consider∑
η

∑
x̃>x

∑
η̃

π(n) (x, y,η) r
(n)
(x,y,η)(x̃, y, η̃)

=
∑
x̃>x

∑
η

π(n) (x, y,η)
∑
η̃

r
(n)
(x,y,η)(x̃, y, η̃)

=π(n)(x, y)
∑
x̃>x

∑
η

π(n) (η|x, y)
∑
η̃

r
(n)
(x,y,η)(x̃, y, η̃)

=π(n)(x, y)
∑
x̃>x

Eη

[
r

(n)
(x,y,η)(x̃, y)

∣∣∣x, y] ,
where r(n)

(x,y,η)(x̃, y) =
∑

η̃ r
(n)
(x,y,η)(x̃, y, η̃).

Note that

r
(n)

(x,y,η)(x̃, y) =

E

min

1,

(
1
d
− (x̃− 1− x)−

∑x̃−2
j=0 (x̃− 1− j)

Xj
dm

1 +
∑x̃−1

j=0

Xj
dm

)+

∣∣∣∣∣∣η


− E

min

1,

(
1
d
− (x̃− x)−

∑x̃−1
j=0 (x̃− j)

Xj
dm

1 +
∑x̃

j=0

Xj
dm

)+

∣∣∣∣∣∣η
 ,

which implies that

Eη

[
r

(n)
(x,y,η)(x̃, y)

∣∣∣x, y] =

E

min

1,

(
1
d − (x̃− 1− x)−

∑x̃−2
j=0 (x̃− 1− j)Xjdm

1 +
∑x̃−1
j=0

Xj
dm

)+



− E

min

1,

(
1
d − (x̃− x)−

∑x̃−1
j=0 (x̃− j)Xjdm

1 +
∑x̃
j=0

Xj
dm

)+

 .

It is easy to show that Xj/dm converges weakly to γ̂i
because η converges weakly to γ̂. Hence, we have

lim
n→∞

Eη

[
r

(n)
(x,y,η)(x̃, y)

∣∣∣x, y] = qx,x̃(γ̂), x < x̃ ≤ Q̄BF ,

and

lim
n→∞

∑
x̃>Q̄BF

Eη

[
r

(n)
(x,y,η)(x̃, y)

∣∣∣x, y] = 0, x < Q̄BF ,

where qx,x̃(γ̂) and Q̄BF are defined in Lemma 2. Since 0 ≤
π(n)(x, y) ≤ 1 and 0 ≤ Eη

[
r

(n)
(x,y,η)(x̃, y)

∣∣∣x, y] ≤ dλ, we
can conclude that

lim
n→∞

∑
η

∑
x̃>x

∑
η̃

π(n) (x, y,η) r
(n)
(x,y,η)(x̃, y, η̃)

= lim
n→∞

π(n)(x, y)
∑
x̃>x

Eη

[
r

(n)
(x,y,η)(x̃, y)

∣∣∣x, y]
= lim
n→∞

π(n)(x, y)
∑

Q̄BF≥x̃>x

lim
n→∞

Eη

[
r

(n)
(x,y,η)(x̃, y)

∣∣∣x, y]
+ lim
n→∞

π(n)(x, y) lim
n→∞

∑
x̃>x≥Q̄BF

Eη

[
r

(n)
(x,y,η)(x̃, y)

∣∣∣x, y]
=π(x, y)

∑
Q̄BF≥x̃>x

qx,x̃(γ̂).

Similarly, we have

lim
n→∞

∑
η

∑
x̃<x

∑
η̃

π(n) (x̃, y, η̃) r
(n)
(x̃,ỹ,η̃)(x, y,η)

=
∑

x̃<x≤Q̄BF

π(x̃, y)qx̃,x(γ̂).

Summarizing the results above, (55) implies that

π(x, y)

 ∑
Q̄BF≥x̃>x

qx,x̃(γ̂) +
∑

Q̄BF≥ỹ>y

qy,ỹ(γ̂)


=

∑
x̃<x≤Q̄BF

π(x̃, y)qx̃,x(γ̂) +
∑

ỹ<y≤Q̄BF

π(x, ỹ)qỹ,y(γ̂).

It is easy to verify the equation above is the detailed balance
equation for two independent and identical Markov chains with
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transition rates given in Lemma 2, and the unique solution
therefore is π(x, y) = π̂xπ̂y for π̂ defined in (4). This means
that queue 1 and queue 2 are independent in the large-system
limit.




